

Proton Plan

Booster Corrector Upgrade

Baseline Review August 2005

Presenter: Eric Prebys & Craig Drennan

Agenda

- > Brief review of what corrector magnets do.
- > Specifications for the Corrector Upgrade Project.
- > The scope and technical aspects of these projects.
- > Management Structure, man-power, schedule, costs ...
- What risks have been considered?
- > Conclusions

Corrector magnets

Purpose of corrector magnets

- > General:
 - Correct for errors due to imperfections in the focusing, defocusing, and bending magnets.
 - Chromaticity correction to cancel head-tail instabilities
- > Dipoles:
 - · Control beam position.
 - Used in conjunction with collimation system to scrape beam halo
 - Used to help maintain precise aperture below extraction septum
- Quadrupoles:
 - · Maintain tune through cycle.
 - · Cancel harmonic resonances.
- > Skew Quadrupoles:
 - Cancel coupled harmonic resonances.
- > Sextupoles:
 - · Control chromaticity to damp head tail instability
 - Cancel harmonic resonances
- > Skew sextupoles:
 - Cancel harmonic resonances

PROTON PLAN Existing Corrector System

- Each of the 48 sub-periods in the Booster has an (original) trim package, containing
 - > Horizontal and Vertical trim dipoles
 - Low- β trims are operated DC
 - horizontal long straights
 - vertical short straights
 - Recently, the high- β trims were upgraded to be controlled by individual ramped current controllers
 - Horizontal short straights
 - Vertical long straights
 - Important for controlling losses
 - > Normal and skew quadrupoles
 - · Individual DC components for harmonic correction, added to
 - A common ramp (one for each type)
- In addition, there are ramped sextupole correctors at discrete locations (3 normal, 2 skew)
 - > Work together with small number of DC sextupoles in a manner similar to the quads

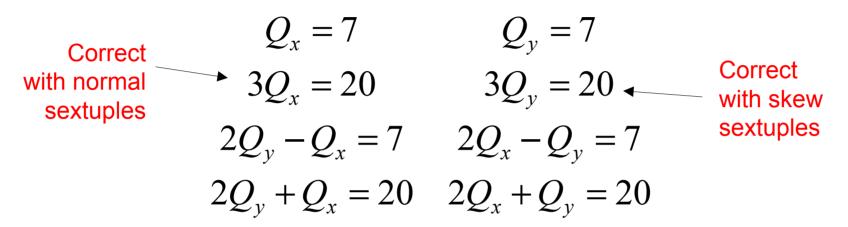
Weaknesses of existing system

Trim dipoles

> Inadequate strength or slew rate to control beam position throughout cycle

Quadrupoles

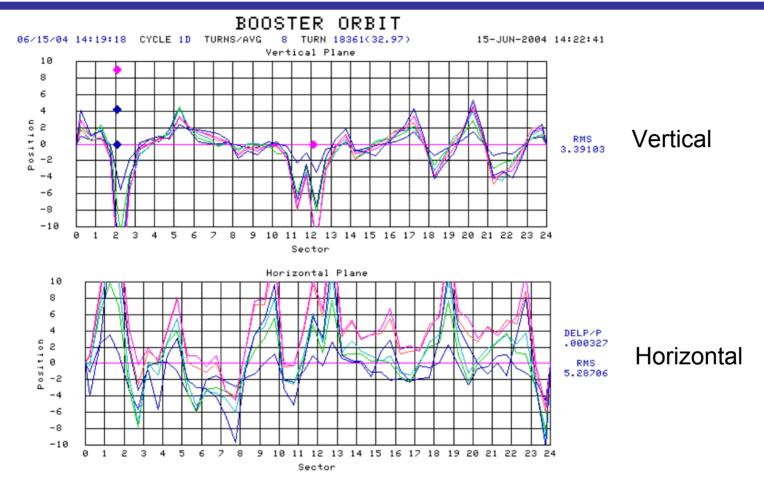
- > Inadequate strength to hold constant tune through cycle
- Inadequate slew rate at transition


Sextupoles

- > Strength adequate
- Discrete locations
 - Result in emittance blow up
 - · Limit number of resonances which can be cancelled

Resonance Correction*

 The Booster is susceptible to the following third order resonances:



- We currently try to correct these with sextupoles at a few discrete point in the ring.
- Putting sextupoles at every period will greatly improve our ability to cancel these resonances.

^{*}See A. Drozhdin, "Fermilab Booster Dynamic Aperture Simulation with new Injection/Extraction Schemes", http://www-ap.fnal.gov/users/drozhdin/prdriver/pap DINAM APER.pdf

Beam Motion

Beam Position at all periods around the ring relative to the position at injection. Traces plotted for 5 ms intervals.

Corrector Goals

Specifications for new corrector system:

- > Position Control:
 - Be able to produce 1 cm of beam motion at highest beam energy (8GeV).
 - Be able to slew position 1 mm/ms up to the middle of the cycle.
 - Correct observed beam motion
 - Work in conjunction with collimation system

> Tune Control:

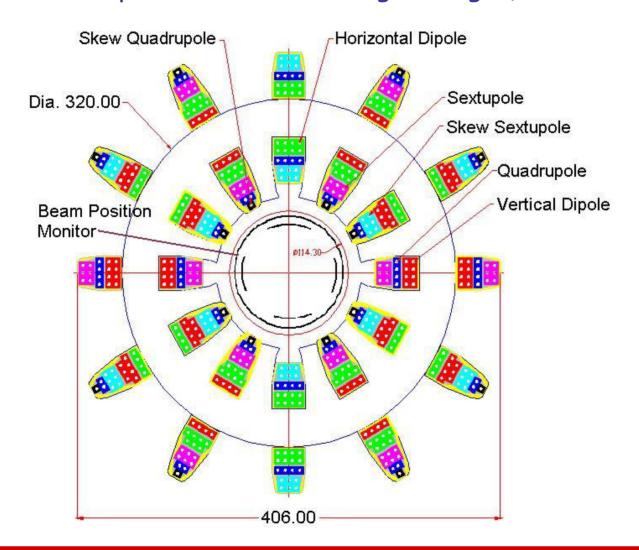
- Maintain tune arbitrarily close to upper integer resonance throughout cycle.
- Be able to switch from full field plus to full field minus in ~1 ms in order to rapidly switch tunes at transition time.

> Sextupoles

- Total strength consistent with existing system.
- Increase slew rate
 - to full field minus in ~1 ms in order to rapidly switch chromaticity at transition time.

Meeting the Goals

Magnet Parameter	Horz. / Vert. Dipole	Normal Quad	Skew Quadrupole	Normal / Skew Sextupole
Integrated Field	0.0175 T-m	0.16 T-m/m	0.0275 T-m/m	1.48 T-m/m ²
Maximum Peak Current	50 Amp	65* Amp	5 Amp	50 Amp
Integrated Field per Amp	87.5E–6 T-m / Amp	1.88E-3 T / Amp	5.5E-3 T / Amp	29.6E-3 T/m/Amp
Maximum Field Slew Rate	3.5 T-m / Sec	160 T / Sec	0.8 T / Sec	2,279 T/m/Sec
Magnet Inductance	7,840 µН	1,104 μΗ	6400 µН	1,760 µН
Magnet Resistance	0.27 Ohms	0.166 Ohms	0.35 Ohms	0.187 Ohms
Maximum Magnet Voltage,				
V = L (dI/dt) + IR	+/-92 Volts	+/-102 Volts	2.7 Volts	+/-145 Volts


Control system specifications:

- > Ramped control of ALL (6x48) elements
- > Closed orbit position correction through cycle
- > Time dependent harmonic correction in addition to global multipole control

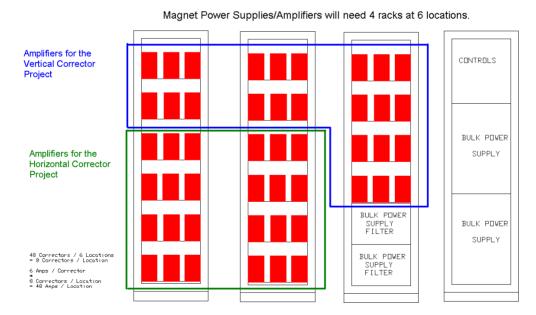
Meeting the Goals

> New Multipole Corrector Package Design (Tech Division)

Meeting the Goals

> New Magnet Power Supplies/Amplifiers

- Higher currents needed for higher magnet fields
- Higher voltages needed for faster slew rates.
- Investigating both an in house design and a suitable vendor product.
- Preliminary specifications available, <u>Beams-doc-1881</u>, version 1.


> New Power Supply Controls

- Will output ACNET programmable current reference curves for the power amplifiers.
- Will digitize current monitor outputs of amplifiers.
- Will compare current references to monitored current outputs to ensure tracking.
- Will provide digital Enable/Inhibit for power amplifiers.
- Will monitor digital status of the power amplifiers.
- Specifications available, <u>Beams-doc-1882</u>, version 1.

Meeting Goals

- > New Racks and Cables for the Corrector System
 - Rack space and cable penetrations have been identified.
 - A booster floor plan has been marked up (<u>Beams-doc-1883</u>, <u>version 1</u>) to show the location of the new corrector magnets, new racks, and cable routing.

Elevation Sketch of Racks

Meeting Goals

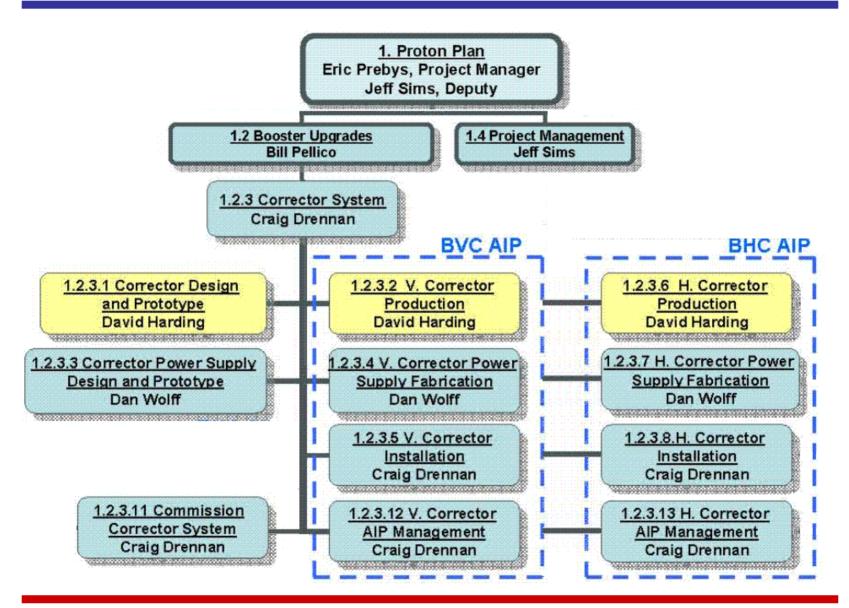
- > New Plumbing for Corrector Package Cooling Water
 - Total water flow -- 1/2 GPM at 60 PSI water pressure drop.
 - Water temperature rise -- 20 C
 - The current water system in the Booster is expected to be able to handle this additional load.

Magnet parameters:

	The coil resistance	Nominal current	Power losses
Vertical Dipole	0.27 Ohm	49.6 A	665 W
Horizontal Dipole	0.27 Ohm	29.7 A	238 W
Normal Quadrupole	0.166 Ohm	42.5 A	300 W
Normal Sextupole	0.187 Ohm	47.75 A	426 W
Skew Quadrupole	0.042 Ohm	14.5 A	0.6 W
Skew Sextupole	0.187 Ohm	47.75 A	426 W

Meeting Goals

- New Magnet Supports and Long and Short Straight Spool Piece Designs
 - New corrector packages will also incorporate a beam position monitor.
 - New cradle supports in the short straights will be designed for the Horizontal Corrector project.
 - New Gamma-T Magnet may be included.


Booster Long Period 14

Booster Short Period 22

Manpower: People Doing the Work

(Those who have assisted so far with estimates and design work, that I can remember and those I expect help from during the project)

- > Corrector System Specification
 - AD BS PROTON SOURCE
 - Jim Lackey, Bill Pellico, Eric Prebys, Dave Harding (TD)
- > Corrector Package Design, Prototyping and Evaluation
 - TD ENGINEERING & FABRICATION
 - Dave Harding, TJ Gardner, Alexander Makarov, Vladimir Kashikhin
- > Corrector Package Fabrication
 - · Outside Manufacturer

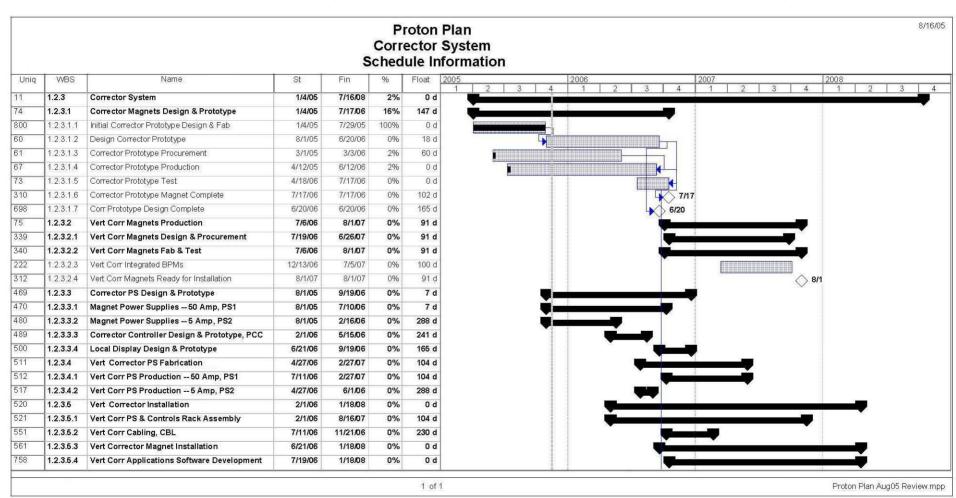
- Manpower: People Doing the Work (cont.)
 - Power Supplies/Amplifiers Design, Prototyping and Evaluation.
 - AD-AS-ELECTRICAL/ELECTRONIC SUPPORT
 - · Dan Wolff, et.al.
 - > Power Amplifier Fabrication
 - Outside Manufacturer
 - > CAMAC Power Supply Controllers
 - AD-ACCELERATOR CONTROLS DEPT
 - · Allen Franck, et.al.
 - > Pulling of Power and Control Cables
 - AD-BE-ENGINEERING SUPPORT
 - James Ranson, Estimates and Oversight
 - Contract Electricians

- Manpower: People Doing the Work (cont.)
 - > Building Power Supply Racks, Cable Termination, Controls Installation.
 - AD-BS PROTON SOURCE
 - · Craig Drennan, design and oversight
 - · Doris Dick, Andrew Feld, Jeff Larson, Rich Meadowcroft
 - > Magnet Cooling Water Installation
 - AD-AS-MECHANICAL SUPPORT DEPT
 - Maurice Ball, et.al.
 - New Magnet Supports and Long / Short Straight Spool Piece Designs
 - AD-AS-MECHANICAL SUPPORT DEPT
 - Joel Misek, Robert Reilly, et.al.

- Manpower: People Doing the Work (cont.)
 - > Removal of Old Long / Short Straight Spool Piece and Assembly and Installation of the New Ones.
 - AD-AS-MECHANICAL SUPPORT DEPT
 - Danny Douglas, Ben Ogert, et.al.
 - > Surveying and Alignment of New Correctors.
 - PPD-TECHNICAL CENTERS
 - Dr. O'Sheg Oshinowo, et.al.
 - > Correctors and Power Supply Tests and Commissioning
 - AD-BS PROTON SOURCE
 - Craig Drennan, Jim Lackey, Bill Pellico, et.al.
 - > Application Software Development
 - AD-ACCELERATOR CONTROLS DEPT
 - Brian Hendricks, Bill Marsh, Richard Neswold, James Patrick

Costs 1 of 2 (not including magnets)

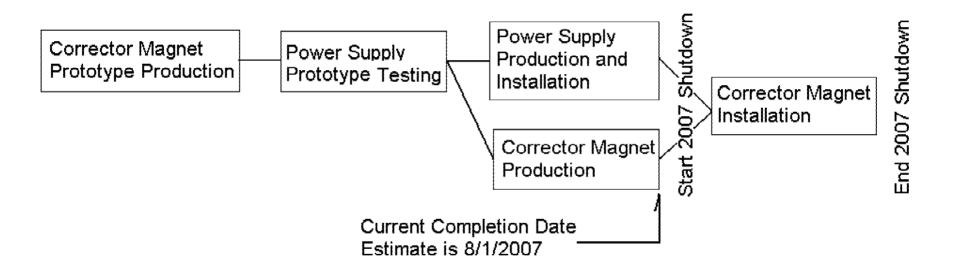
WBS	Name	Esc SWF	Esc M&S	Cont %
1.2.3	Corrector System	\$1,813,563	\$2,764,371	45%
1.2.3.1	Corrector Magnets Design & Prototype	\$152,214	\$49,409	25%
1.2.3.1.1	Initial Corrector Prototype Design & Fab	\$62,742	\$15,000	0%
1.2.3.1.2	Design Corrector Prototype	\$43,373	\$0	40%
1.2.3.1.3	Corrector Prototype Procurement	\$5,290	\$34,409	40%
1.2.3.1.4	Corrector Prototype Production	\$40,809	\$0	40%
1.2.3.1.5	Corrector Prototype Test	\$0	\$0	0%
1.2.3.1.6	Corrector Prototype Magnet Complete	\$0	\$0	0%
1.2.3.1.7	Corr Prototype Design Complete	\$0	\$0	0%
1.2.3.2	Vert Corr Magnets Production	\$319,547	\$493,268	58%
1.2.3.2.1	Vert Corr Magnets Design & Procurement	\$21,727	\$78,810	40%
1.2.3.2.2	Vert Corr Magnets Fab & Test	\$284,593	\$374,075	60%
1.2.3.2.3	Vert Corr Integrated BPMs	\$13,227	\$40,383	60%
1.2.3.2.4	Vert Corr Magnets Ready for Installation	\$0	\$0	0%
1.2.3.3	Corrector PS Design & Prototype	\$140,684	\$26,728	40%
1.2.3.3.1	Magnet Power Supplies 50 Amp, PS1	\$75,773	\$10,794	40%
1.2.3.3.2	Magnet Power Supplies 5 Amp, PS2	\$32,544	\$2,056	40%
1.2.3.3.3	Corrector Controller Design & Prototype, PCC	\$19,102	\$12,336	40%
1.2.3.3.4	Local Display Design & Prototype	\$13,265	\$1,542	40%
1.2.3.4	Vertical Corrector PS Fabrication	\$42,080	\$499,608	40%
1.2.3.4.1	Vert Corr PS Production 50 Amp, PS1	\$36,931	\$462,600	40%
1.2.3.4.2	Vert Corr PS Production 5 Amp, PS2	\$5,149	\$37,008	40%
1.2.3.5	Vertical Corrector Installation	\$225,387	\$266,253	40%
1.2.3.5.1	Vert Corr PS & Controls Rack Assembly	\$65,668	\$124,376	40%
1.2.3.5.2	Vert Corr Cabling, CBL	\$15,075	\$61,920	40%
1.2.3.5.3	Vert Corrector Magnet Installation	\$48,240	\$79,957	40%
1.2.3.5.4	Vert Corr Applications Software Development	\$96,405	\$0	40%



Costs 2 of 2 (not including magnets)

WBS	Name	Esc SWF	Esc M&S	Cont %
1.2.3.6	Horiz Corr Magnets Production	\$319,547	\$493,268	58%
1.2.3.6.1	Horiz Corr Magnets Design & Procurement	\$21,727	\$78,810	40%
1.2.3.6.2	Horiz Corr Magnets Fab & Test	\$284,593	\$374,075	60%
1.2.3.6.3	Horiz Corr Integrated BPMs	\$13,227	\$40,383	60%
1.2.3.6.4	Horiz Corr Magnets Ready for Installation	\$0	\$0	0%
1.2.3.7	Horizontal Corrector PS Fabrication	\$42,080	\$499,608	40%
1.2.3.7.1	Horiz Corr PS Production 50 Amp, PS1	\$36,931	\$462,600	40%
1.2.3.7.2	Horiz Corr PS Production 5 Amp, PS2	\$5,149	\$37,008	40%
1.2.3.8	Horizontal Corrector Installation	\$238,681	\$256,754	40%
1.2.3.8.1	Horiz Corr PS & Controls Rack Assembly	\$65,668	\$124,376	40%
1.2.3.8.2	Horiz Corr Cabling, CBL	\$15,075	\$61,920	40%
1.2.3.8.3	Horiz Corrector Magnet Installation	\$61,533	\$70,458	40%
1.2.3.8.4	Horiz Corr Applications Software Development	\$96,405	\$0	40%
1.2.3.9	Commission Corrector System	\$77,220	\$0	0%
1.2.3.10	Corrector System Complete	\$0	\$0	0%
1.2.3.10	Vert Corr AIP Project Management	\$44,453	\$0	40%
1.2.3.11	Horiz Corr AIP Project Management	\$36,282	\$0	40%
1.2.3.12	2.3.12 Prepare AIP Documentation \$27,		\$0	40%
1.2.3.13	.3.13 Corrector System Technical Review		\$0	0%
1.2.3.14	.14 Corrector AIPs Approved		\$0	0%
1.2.3.15	Review Booster Modifications Design	\$0	\$0	0%
1.2.3.16	Corrector System Installation Review	\$0	0%	
1.2.3.17	Corrector Magnets Spares Account (12 spares)	\$147,822	\$179,475	40%

Schedule 1 of 2 (detailed Gantt chart available)



· Schedule 2 of 2 (detailed Gantt chart available)

					Corre		Plan System formation
Uniq	WBS	Name	St	Fin	%	Float	2005 2006 2007 2008 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
687	1.2.3.6	Horiz Corr Magnets Production	7/6/06	8/1/07	0%	91 d	
688	1.2.3.6.1	Horiz Corr Magnets Design & Procurement	7/19/06	6/26/07	0%	91 d	
693	1.2.3.6.2	Horiz Corr Magnets Fab & Test	7/6/06	8/1/07	0%	91 d	
696	1.2.3.6.3	Horiz Corr Integrated BPMs	12/13/06	7/5/07	0%	100 d	
697	1.2.3.6.4	Horiz Com Magnets Ready for Installation	8/1/07	8/1/07	0%	91 d	\$ 8/1
599	1.2.3.7	Horizontal Corrector PS Fabrication	4/27/06	2/27/07	0%	104 d	
600	1.2.3.7.1	Horiz Corr PS Production 50 Amp, PS1	7/11/06	2/27/07	0%	104 d	
605	1.2.3.7.2	Horiz Corr PS Production 5 Amp, PS2	4/27/06	6/1/06	0%	288 d	
608	1.2.3.8	Horizontal Corrector Installation	2/1/06	1/18/08	0%	0 d	
609	1.2.3.8.1	Horiz Corr PS & Controls Rack Assembly	2/1/06	8/16/07	0%	104 d	
639	1.2.3.8.2	Horiz Corr Cabling, CBL	7/11/06	11/21/06	0%	230 d	
649	1.2.3.8.3	Horiz Corrector Magnet Installation	6/21/06	1/18/08	0%	0 d	
764	1.2.3.8.4	Horiz Corr Applications Software Development	7/19/06	1/18/08	0%	0 d	
768	1.2.3.9	Commission Corrector System	1/22/08	7/16/08	0%	0 d	
801	1.2.3.10	Corrector System Complete	7/16/08	7/16/08	0%	0 d	7/1
769	1.2.3.10	Vert Corr AIP Project Management	7/19/06	1/18/08	0%	125 d)
770	1.2.3.11	Horiz Corr AIP Project Management	7/19/06	1/18/08	0%	125 d	-
762	1.2.3.12	Prepare AIP Documentation	8/1/05	4/7/06	0%	70 d	
784	1.2.3.13	Corrector System Technical Review	7/18/06	7/18/06	0%	0 d	
763	1.2.3.14	Corrector AIPs Approved	7/18/06	7/18/06	0%	0 d	₹/18
729	1.2.3.15	Review Booster Modifications Design	7/20/06	7/20/06	0%	297 d	
785	1.2.3.16	Corrector System Installation Review	3/1/07	3/1/07	0%	347 d	
728	1.2.3.17	Corrector Magnets Spares Account (12 spares)	9/16/05	3/27/06	0%	580 d	

> Critical Path(s)

- Corrector Package Performance and Production
- (Harding)
 - > Does not meet magnetic specifications
 - Build prototype and check before committing to production
 - > Inadequate design support -> schedule slip
 - Trying to get more help

Power Amplifier Performance

- Will we damage the schedule and spend man-hours beyond the budget with a power amplifier that cannot meet the specifications?
 - Output voltage and current ripple must be tolerable
 - Slew rates must be fast with acceptable settling times.
 - The units must hold up to the power cycling and other thermal effects.
- Reducing This Risk: Procure and test two candidate power amplifiers.
 - 1. A variation of existing power amplifiers design and supported by AD-AS-ELECTRICAL/ELECTRONIC SUPPORT. This is expected to be less expensive to procure and maintain.
 - 2. A power amplifier available from an outside manufacturer whose standard product appears to meet our needs. A first article can be purchased right away (10-12 wks ARO).

PROTON PLAN Risk Analysis and Mitigation

- ➤ Will everything be in place for the 2007 Shutdown?
- ➤ Will everything be working for the 2007 START-UP?
 - Scheduling work during the 2007 shutdown is challenging.
 - Old spool pieces in long and short straights must be removed.
 - New corrector spool pieces installed.
 - Correctors cabled, plumbed, surveyed and tested.
 - New BPM's cabled, cable delays matched.

Reducing This Risk:

- Many tasks need not wait for a shutdown. Rack space is available to install and test power supplies and controls.
- Cable pulls and some plumbing can be done during the 2006 shutdown
- Power amplifiers and controls can be debugged with test loads in the gallery.
- Prototyping of the spool pieces and supports in 2006.
- Make measurements and drawings for each straight in 2006

Conclusions

- Putting more beam through the Booster means we will need tighter control of our optics to avoid instabilities that cause beam loss and equipment activation.
- The stronger fields and higher slew rates will give us much more control.
- The Corrector Upgrade Projects are among the largest in the Proton Plan.
- The schedule looks do-able.